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Appendix A - Estimation of the standard error and upward

bias of the partial EVPI

Standard error of the two-level Monte Carlo estimator

The two-level Monte Carlo estimator for the partial EVPI of parameters of interest xi is typically

written as
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where x
(j,k)
−i are samples drawn from the distribution of X−i|Xi = x

(k)
i . The number of inner

loop samples is J , the number of outer loop samples is K, and N is the number of samples used

to estimate the value of the baseline decision option.9 If N is large, then the sampling variability

in the partial EVPI estimator is dominated by the first term.

However, if we instead estimate the partial EVPI by
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we can exploit the positive correlation between the two terms in equation (28). This results

in a lower overall variance for the partial EVPI estimator, even for cases where N is chosen to

be very large. The two-level Monte Carlo EVPI values reported in our two case studies were

computed using this approach.

We can estimate the standard error of the partial EVPI computed via this latter approach as

follows. We denote
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Unless J is very small, the estimated standard error of the partial EVPI is given by
�
1

K
{�var(l1) + �var(l2)− 2�cov(l1, l2)}, (32)

where �var and�cov are the usual sample estimators. For cases where J is very small (typically in
the order of 10s), an extra term is required to account for the inner loop Monte Carlo variability.

See Oakley et al (2010) for details of this and for the derivation of an estimator for the upward

bias of the two-level Monte Carlo method.9

Upward bias of the two-level Monte Carlo estimator

This section follows a similar derivation given in Oakley et. al. (2010).9

Firstly, we denote the net benefit for outer sample k, averaged over the inner loop samples, as
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and the vector of µ̂
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d over decision options as µ̂(k) = (µ̂
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Unless J is trivially small the sampling distribution for µ̂(k) has approximately a D−dimensional
multivariate Normal distribution
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where µ(k) and V (k) are unknown.

Next, we define a variance-covariance matrix V̂ (k) where element p, q of V̂ (k) has value
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If we approximate µ(k) by µ̂(k) and V (k) by V̂ (k) we can generate samples µ̃
(k)
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�
and hence observe the properties of the two-level Monte Carlo estimator for

partial EVPI.

To estimate the upward bias we generate µ̃
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S for large S (say 10,000) from the distri-

bution above, with
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An estimate of the upward bias for outer sample k is given by
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and the overall expected bias is
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Standard error and upward bias of GAM estimator

We can estimate the standard error and upward bias of the partial EVPI obtained by the GAM

regression method using the following sampling approach.

Any GAM model can be re-expressed as a parametric model. All this requires is that we find the

matrixX∗ that maps the model coefficients β̂d onto the fitted values ĝd = {ĝ(d,x(1)i ), . . . , ĝ(d,x
(N)
i )},

i.e.

ĝd =X∗
d β̂d. (39)

Helpfully, X∗
d is returned by the predict.gam function in the mgcv package. Given X∗

d and

Vβd
, the covariance matrix for β̂d (which is returned as part of the gam function call), then the

estimated covariance for gd|yd is

V̂d =X∗
dVβd

X∗T
d . (40)

The joint distribution of β̂d is multivariate Normal, and therefore

gd|yd ∼ N(ĝd, V̂d). (41)

For each decision option d, we draw a large number (say 10,000) of sampled values of gd|yd from

the above distribution. We denote these samples g̃
(s)
d , (s = 1, . . . , S). For each g̃

(s)
d we calculate

the partial EVPI via equation (9) replacing ĝd with g̃
(s)
d . We denote the sampled partial EVPI

values ẽs, (s = 1, . . . , S). The sample standard deviation of ẽs is an estimate of the standard

error we require.



An estimate of the upward bias of the partial EVPI estimator due to the maximisation in

equation (9) is given by

b̂ =
1

S
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ẽs − ê. (42)

where ê is the partial EVPI estimate computed at ĝd.

Standard error and upward bias of the Gaussian process estimator

We can estimate the standard error of the partial EVPI obtained by the Gaussian process

method using the same sampling approach as above. The conditional distribution of gd =

{g(d,x(1)i ), . . . , g(d,x
(N)
i )} given the net benefits nbd = {NB(d,x(1)), . . .NB(d,x(N))} is ap-

proximately multivariate Normal

gd|yd ∼ N(ĝd, V̂d), (43)

where ĝd is given in equation (21), and the estimated covariance matrix V̂d is

V̂d = �σ2d{Σd − ΣdΣ
∗−1
d Σd + (H − ΣdΣ

∗−1
d H)(HTΣ∗−1

d H)−1(H − ΣdΣ
∗−1
d H)T}. (44)

The standard error and upward bias are estimated in the same manner as for the GAM method,

as explained above.

Appendix B - Estimation of Gaussian process hyperparam-

eters

For each decision option, d, we wish to find values for the hyperparameters δ = (δ1, . . . , δp) and

ν that maximise the log posterior density π(δ, ν|nbd). Up to some additive constant, the log

posterior density of δ and ν given the net benefits nbd is

π(δ, ν|nbd) = −n− q + 2a

2
log
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2
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2
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2
log |HTΣ∗−1H|+ π(δ, ν), (45)

where Σ is given by equation (17) and Σ∗ = Σ+ νI. The term �σ2 is the posterior mean for σ2

given by equation (20), and a and b are the parameters of an Inverse Gamma prior density for

σ2. The final term π(δ, ν) is the joint prior density for δ and ν. The derivation of equation (45)

is given in appendix C.

For the correlation lengths δj we assume weak Normal priors log(δj) ∼ N(0, 106). For the

variance and nugget terms we assume Inverse Gamma priors σ2 ∼ IG(0.001, 0.001) and ν ∼
IG(0.001, 1).



The log posterior equation (45) must be maximised numerically. Methods include deterministic

algorithms such as Nelder-Mead, or stochastic algorithms such as simulated annealing. R code

for the optimisation of the log posterior is available at:

http://www.shef.ac.uk/scharr/sections/ph/staff/profiles/mark.

Appendix C - Derivation of the posterior density of the GP

regression hyperparameters

The likelihood of the net benefits nbd under the Gaussian process model in equation (18), as a

function of the hyperparameters β, σ2, δj and ν, is given by
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where Σ∗ = Σ + νI, and where Σ is the function of δj given by equation (17). Given a non-

informative prior for β, π(β) ∝ 1, and some arbitrary prior π(σ2, δ, ν), where σ2, δ and ν are

independent of β then the posterior density of β, σ2, δj and ν is
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π(σ2, δ, ν)
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We define �β to be the posterior mean for β as given in equation (19) (derivation not shown).

By combining equation (47) with equation (19) we can re-express equation (47) in the form of

a Normal Inverse Gamma density, allowing us to integrate out β giving
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Next we define �σ2 to be the posterior mean of σ2 given in equation (20) (derivation not shown),
and re-express Eg. (48) in terms of �σ2 to give
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π(σ2, δ, ν)

(σ2)
n−q
2 |Σ∗| 12 |HTΣ∗H| 12

exp

�
− (n− q − 2)�σ2

2σ2

�
. (49)

If we choose as a prior for σ2d an Inverse Gamma IG(a, b) density, then we can re-express equation

(48) as
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π(δ, νd)

(σ2)
n−q+2a+2

2 |Σ∗| 12 |HTΣ∗H| 12
exp

�
− (n− q − 2)�σ2 + 2b

2σ2

�
. (50)

This posterior is also proportional to an Inverse Gamma density, which allows us to integrate

out σ2 to give

p(δ, ν|nbd) ∝
π(δ, ν)
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Taking the log gives equation (45).


